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Abstract 
 
The dynamic response of critical aerospace components is often strongly dependent upon the 
dynamic behavior of bolted connections that attach the component to the surrounding 
structure.  These bolted connections often provide the only structural load paths to the 
component. The bolted joint investigated in this report is an inclined lap-type joint with the 
interface inclined with respect to the line of action of the force acting on the joint. The 
accurate analytical modeling of these bolted connections is critical to the prediction of the 
response of the component to normal and high-level shock environmental loadings.  In 
particular, it is necessary to understand and correctly model the energy dissipation (damping) 
of the bolted joint that is a nonlinear function of the forces acting on the joint.  Experiments 
were designed and performed to isolate the dynamics of a single bolted connection of the 
component.  Steady state sinusoidal and transient experiments were used to derive energy 
dissipation curves as a function of input force.  Multiple assemblies of the bolted connection 
were also observed to evaluate the variability of the energy dissipation of the connection. 
These experiments provide insight into the complex behavior of this bolted joint to assist in 
the postulation and development of reduced order joint models to capture the important 
physics of the joint including stiffness and damping.  The experiments are described and 
results presented that provide a basis for candidate joint model calibration and comparison. 
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Introduction 
The analytical modeling of bolted connections of a structural component to its mounting 
points is critical to the prediction of the response of the component to normal and high-level 
shock environmental loadings. These bolted connections often provide the only structural 
load paths to the component.  In particular, it is necessary to understand and correctly 
model the energy dissipation (damping) of the bolted joint that is a nonlinear function of the 
forces acting on the joint. Experiments discussed in this report were designed to isolate a 
single bolted connection to focus the investigations to assist in the development of a 
reduced order model representing the energy dissipation of the connection.  The bolted joint 
investigated is a lap-type joint with an interface inclined with respect to the line of action of 
the force. Multiple assemblies of the bolted joint were used to evaluate the variability of the 
energy dissipation of the connection. These experiments have been used to provide insight 
into the complex behavior of this bolted joint to assist in the postulation and development of 
candidate joint models [1,2,3] to capture the important physics of the joint including 
stiffness and damping.   
 

Energy Dissipation Studies 
A bolted connection of the component identified in the plots as the AF&F was initially 
studied by designing an experiment to investigate the behavior of a “single-leg” of a multi-
legged attachment.  Test specimens capturing the local geometry of the connection were 
fabricated as shown in Figure 1 and Figure 2.  The same materials, titanium and stainless 
steel, used for the actual AF&F connection were used along with the same type of bolt used 
for the actual assembly.  During observations of assembly of the component parts to the 
mounting hardware the vertical gap between the base of the component and the legs of the 
attachment hardware was observed to range from a few thousandth’s of an inch to a light 
contact condition.  This vertical gap is shown in an expanded view in Figure 3.  
Experiments were performed with a gap of 0.010 inch and with the gap closed to 
investigate the effect on the energy dissipation. 
 

  
Figure 1. Single leg test specimen. Figure 2. Single leg test specimen w/bolt. 

Titanium 

Stainless Steel 
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Figure 3. Expanded view of vertical gap. 

 
The single-leg specimen was assembled into the microslip [4,5] experimental hardware to 
create a single degree of freedom (SDOF) system.  The test specimen essentially represents 
a non-linear spring in the system.  The large inertial mass is supported by soft springs to 
balance the static weight of the system.  The experimental setup is shown in Figure 4.  A 
piezoelectric force gage was used beneath the test specimen to measure the input force. 
Piezoelectric accelerometers were used to measure the accelerations of the base and the 
mass.  The excitation for the experiments was provided with a T1000 Unholtz-Dickie 
electrodynamic exciter.  A Spectral Dynamics 2552 Vibration Control System was used to 
generate and control the excitation waveforms used in the experiments.  The response of the 
mass to base excitation is very sensitive to changes in the bolted joint.  These changes can 
be associated with bolt torque and interface pressure, seating of the interfaces, wear, and 
other sources. 
 

 
Figure 4. Experimental setup in single degree of freedom 
configuration. 

 

Stainless Steel 

Titanium

Vertical
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The experiment can be represented as a base driven SDOF system as shown in Figure 5. 
The inertial mass is the mass, m, and the base is driven by the force, f.  A linear spring, k, 
and a linear damping element, c, represent the linear part of the specimen. The nonlinear 
restoring force is lumped into r.   
 

x

y

kc

m

z = y-x
r

f
 

Figure 5. Model of experiment. 
 

Measuring Energy Loss Per Cycle 
The motion-to-motion transmissibility of a viscous damped base excited SDOF system is 
given by the well-known equation [6] 
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( ) ( )2222
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/2/1

/21
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ωζω
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=    (1) 

 
where ω  is the frequency and ζ  is the viscous damping ratio. 
At the undamped resonant frequency, nω , 1/ =nωω  and for 1<<ζ the transmissibility is 
approximately  

ζ2/1≈T      (2) 
 
For this discussion the motion measures of interest are the acceleration of the base and 
mass. For this system the force at the base is just the mass acceleration multiplied by the 
mass. Therefore the driving point accelerance (base acceleration / base force) is the 
reciprocal of the transmissibility divided by the mass. 
 
The transmissibility at resonance is called the amplification factor or quality factor, 

( ) )2/1(, ζω == nTQQ  of the system. The damping factor is related to the viscous 
damping coefficient by 

nmc ζω2=      (3) 
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For this experimental system the quality factor is the mass acceleration divided by the base 
acceleration. 
For forced harmonic motion at frequency, ω, and with displacement amplitude, Y, Thomson 
[8] defines an equivalent viscous damping, ceq, for systems with other types of damping on 
the basis of an equivalent energy dissipated per cycle, E. 
 
     2YcE eqωπ=      (4) 
 
When the frequency of motion is ω= ωn this gives 
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π
==     (5) 

Where 
Am = Acceleration of mass 
Ab =Acceleration of base 
Q = Am/Ab=Quality Factor 
Am>>Ab and YA nm

2ω=  

Experimental Results 

Steady State Sine Vibration Experiments 
Experiments were performed to measure the energy loss per cycle for a sinusoidal input 
force over a range of loads of 60, 120, 180, 240, and 320 lb-peak with the specified torque 
of 85 inch-lb resulting in a computed normal force of approximately 1700 lb. 
 
The over-sized hole in the forward mount allows significant variation in alignment to occur 
unless efforts are made to minimize the effect.   The oversized hole in the leg and the 
interaction of the interface and the bolt head with the hole is the suspected major source of 
variation in the response of the system from assembly-to-assembly of the same joint.  A 
finite element analysis was performed using ABAQUS [7] to calculate the normal pressure 
in the interface due to the bolt preload.  ABAQUS was used for convenience because the 
original quasi-static analyses were performed with this code. The results of the analysis are 
shown in Figure 6.  The analysis shows the normal pressure is extremely high near the edge 
of the bolt hole and decreases rapidly away from the hole.  
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Figure 6. Normal pressure in interface due to bolt 
preload. 

 
The energy loss per cycle was experimentally determined by performing a sine sweep 
controlling the force at a constant value over a frequency bandwidth encompassing the 
fixed base resonance of the test system.  The fixed base resonant frequency of the system 
ranged form 269 to 278 Hz depending on the excitation level and varied slightly for each 
assembly of the bolted connection.  The amplitude ratio (transmissibility) between the 
acceleration of the mass and the acceleration of the base was then calculated to determine 
the amplification factor (Q). A constant bandwidth (10Hz) digital tracking filter was used 
with a linear sweep rate of 0.50 Hz per second in the signal processing to compute Q.  The 
amplification factor was established at the frequency where the phase was measured to be 
90 degrees.   
 
Single Leg Experiments With a Controlled Gap Opening 

Data were collected for a total of nine load cycles.  A load cycle encompassed cleaning the 
surfaces and reassembling the joint and then performing sweeps at each of the five force 
levels.  For the first series of experiments a precision 0.010-inch shim was used to set the 
spacing in the joint each time to obtain as repeatable an experiment as possible.   
 
The energy loss per cycle data versus force for the nine experiments are shown in Figure 7 
in a log-log plot that indicates the straight-line character of the data.  This straight-line 
relationship indicates that there is a power law relationship between the energy loss per 
cycle and the input force, E=kFn. The data are also shown on a linear plot in Figure 8 that 
illustrates the strong dependence of the energy dissipation on input force. 
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Figure 7. Log-log plots of force vs. energy dissipation curves. 

 

 
Figure 8. Linear plot of force vs. energy dissipation curves. 

 
The data tend to fall relatively close to each other with the exception of experiment number 
four which shows much less dissipation than the other experiments.  It appears that the 
system was “locked-up” for this trial, but for subsequent experiments returned to similar 
levels as previous experiments. The data show that even though one set of hardware was 
used in all experiments, variation due to repeated disassembly and assembly is on the order 
of 20 to 30 percent (excluding outlying data from experiment number four).  The 
experimental results plotted with the mean and standard deviation are shown in Figure 9.  
The data, with the exception of experiment number four, fall within one standard deviation 
of the mean. 
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Figure 9. Energy dissipation curves with mean and 
standard deviation. 

 
The slopes of the energy curves, shown in Figure 10, were found by fitting a straight line to 
each set of the log-log data and were found to be very repeatable with an average slope of 
2.429 and a standard deviation of 0.05218.  This indicates that although the overall 
amplitude of the energy loss may vary 20-30 percent, the slope of each energy curve seems 
to be very repeatable.  This is an important observation because the slope of the energy 
dissipation curve is an important parameter in establishing reduced order models for joint 
models such as the Iwan model and Smallwood’s 3-parameter model [1,2,3].  The slopes 
are also plotted as a function of the Test Run Number (Experiment Number) and shown in 
Figure 11.  The results do not indicate any significant trend associated with wear of the 
surfaces over the first set of experiments.   
 

 
Figure 10. Straight line fit to energy dissipation data. 
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Figure 11. Slope of energy dissipation for each test run. 

 

Single Leg Experiments With a Closed Gap 

A total of seven load cycles were preformed with the vertical gap closed (light contact 
condition) to investigate the effect of the interaction of the additional interface.  The results, 
shown in Figure 12 through Figure 14, indicate similar levels of dissipation as for 
experiments with the vertical gap open, but with slightly higher variation among the trials.  
The data were fit with straight lines, and the slopes computed along with the statistics and 
are listed in Figure 13.  The mean slopes were very similar (2.429 and 2.410) between the 
0.010 gap experiments and the experiments with the gap closed.  The primary effects of the 
additional contact seem to be a slight increase in the energy dissipation and an increased 
variability due to the differences in assembly. 
 

 
Figure 12. Energy dissipation curves with no gap in interface. 
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Figure 13. Energy Dissipation Curves with Mean and Std. 
Deviation. 

 

 
Figure 14. Straight line fit to energy dissipation curves 
with no gap. 

 
Solid Single Leg Experiments 

A similar set of experiments were performed for a geometrically identical solid-leg made of 
stainless steel with no frictional interface.  The purpose of the experiments was to establish 
a lower limit for the unaccounted loss mechanisms in the experiment and to allow the 
contribution due to the joint to be identified.  It is acknowledged that the solid-leg will not 
have the same stiffness as would a single piece composite (both titanium and stainless steel-
- physically impossible to construct) solid-leg of titanium and stainless steel, but the 
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internal material damping of stainless steel and titanium are both very low and well below 
the damping introduced by a bolted interface. 
 

 
Figure 15. Solid leg experimental setup. 

 
The results for the solid single leg are shown in Figure 16 for five load cycles.  The 
measured natural frequencies for the solid leg experiment ranged from 362 to 364 Hz. 
These were considerably higher than the jointed single leg whose natural frequencies 
ranged from 273 to 278 Hz.  These frequency differences illustrate the reduction in stiffness 
in a bolted joint vs. a solid geometry.  The data for the solid single leg was very repeatable 
as might be expected from a linear structure without the uncertainty of a bolted connection.   
 

 
Figure 16. AF&F solid leg results. 

 

Slope=2
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The energy dissipation at the lower force levels were very small and difficult to measure 
experimentally. At the lower force levels the measurement of the amplification factor Q 
was limited by the noise floor of the measurement system. The data are shown plotted with 
a line with a slope of two in Figure 16.  As can be seen at low force levels the data do not 
follow the theoretical slope of two for a linear system, however, at higher force levels with 
better signal-to-noise the data closely follow the theoretical slope.   
 
The solid and jointed single leg data are plotted together in Figure 17.  The data show the 
significant increase in energy dissipation introduced by the presence of the bolted 
connection.  The data also show the difference in slopes of the energy curves between the 
two systems resulting in much increased energy dissipation for the jointed connection as the 
input force increases. 
 

 
Figure 17. Comparison of solid and jointed single leg. 

 
Load History Effects 

The experiments demonstrated load history effects that were also noted for simple lap joint 
experiments [5].  The amplification factor, Q, would increase with the number of vibration 
cycles.  When the bolted joint was disassembled and reassembled with the same torque the 
system would return to similar starting point with a lower amplification factor (higher 
damping) and then follow similar trend of decreasing damping.  A total of seven 
experiments were performed with an input force of 120 pounds. For each experiment a total 
of four sinusoidal sweeps were performed and the equivalent viscous damping ratio 

Q2
1≈ζ  

was computed and plotted as a function of the cumulative number of vibration cycles in 
Figure 18.  As can be seen, the equivalent damping ratio decreases in an asymptotic fashion 
as the number of cycles of vibration increases.  The mean of the data varies from 
approximately 0.4 to 0.3 percent of critical damping over approximately 28,000 cycles of 
vibration (approximately 2 minutes at 275 Hz).  This is a change of approximately 25 
percent in the damping ratio. 
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Figure 18. Load history dependence of single leg damping. 

 

Base Hysteresis Measurements 
The non-linear response of the single-leg experiment was further investigated by computing 
the hysteresis curves computed from the input force and the motion of the base.  As 
discussed in Reference [5] the base hysteresis curve developed at resonance provides a 
sensitive measure of the non-linear response of the system.   
 
The energy dissipated during steady state response in a single input passive system must be 
equal to the energy supplied at the input to the system to sustain the steady state response. 
For a simple harmonic input the input energy per Thomson [8] is  
 

φsinFXE =      (7) 
 
Where F is the magnitude of the force input, X is the magnitude of the base displacement 
and φ is the phase angle between the force and displacement. The relationship between the 
magnitude of the acceleration and the magnitude of the displacement at the frequency, ω, is 
simply 
 

XA 2ω−=      (8) 
 
Only the component of displacement out of phase with the force will dissipate energy. At 
resonance, φ = 90 degrees, and 1sin =φ . The orthogonality of sine and cosine functions 
shown in Equation 9 assures that if either the force or acceleration is a pure sinusoid, sin θ, 
then harmonic distortion, sin nθ, in the other measure will not dissipate energy.  
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2
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π

θθθ dmn   For n ≠ m   (9) 

0coscos
2

0
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π

θθθ dmn   For n ≠ m     

 
Only the fundamental component will dissipate energy. If both the force and displacement 
of the base are distorted then the harmonics can dissipate energy.  At resonance almost all 
the harmonic distortion observed in the experiments was in the base acceleration waveform. 
The inertial mass acceleration waveform was nearly a scaled version of the base input force, 
Am=F/M. 
 
At the resonance, the inertia and stiffness forces balance.  The motion required at the base 
to maintain a steady state response with a prescribed force is very small for a lightly 
damped system. In order to estimate the small base motion in the presence of background 
shaker and instrumentation noise, additional knowledge about the response of the system to 
sinusoidal excitation was leveraged.  If a linear system is excited by a sinusoidal force at 
frequency, ω, the response will occur at exactly that same frequency.  If the excited system 
is nonlinear, higher harmonics may be evoked, but the orthogonality discussed above 
assures that all of the energy will reside in the first harmonic.  If the excitation is at a 
fundamental frequency and several of its harmonics, the dissipation consists of components 
associated with motions at the fundamental and all harmonics common to both the force 
and the motion. 
 
This knowledge was applied by fitting a best least squares fit to the measured base 
acceleration with a sum of phase shifted sinusoids at the fundamental frequency and higher 
harmonics.  In other words, the Fourier coefficients of the base motion were calculated.  
This signal processing selectively filters the response at only the fundamental frequency 
and its harmonics, discarding all other portions of the measured signal due to noise 
(assuming that power line frequency and harmonics do not coincide with the resonant 
frequency and harmonics i.e. 60 Hz, 120 Hz, 180 Hz, etc.).   It was determined by fitting the 
data with varying numbers of harmonics that maintaining fundamental and five harmonics 
was sufficient to represent the periodic component of the base motion.  Very little was 
gained by including yet higher harmonics.   
 
The Fourier coefficients indicate that the second harmonic is very strong in the base motion 
and that is an indication of asymmetric motion between tension and compression of the 
joint.   Asymmetric waveforms tend to require the addition of even harmonics for their 
Fourier series representation as compared to symmetric waveforms that may require only 
odd harmonics. A typical set of Fourier coefficients for the base acceleration is shown in 
Table 1.  Note that the amplitude of the second harmonic (twice the frequency of the 
fundamental) is higher than the fundamental amplitude.  The asymmetry between tension 
and compression arises from at least two effects, first the difference in the joint stiffness 
between tension and compression and second, the normal traction is significantly higher on 
the compression part of the cycle thereby increasing the resisting frictional force in the 
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interface. The corresponding Fourier coefficients for the input force and acceleration of the 
mass are given in Table 2 and Table 3. 
 

Table 1. Fourier coefficients of typical base acceleration for 60lb force input. 
Harmonic # Frequency 

(Hz) 
Acceleration 
Amplitude 

(g) 

Phase 
(Radians) 

1 (Fundamental) 2.79E+02 1.60E-03 -9.23E-01 
2 5.57E+02 3.08E-03 -2.49E+00 
3 8.36E+02 4.74E-04 3.84E-01 
4 1.11E+03 4.74E-04 -2.86E+00 
5 1.39E+03 1.73E-04 -2.84E+00 
6 1.67E+03 3.17E-04 -2.37E-01 

 
 

Table 2. Fourier coefficients of typical 60lb force input. 
Harmonic # Frequency 

(Hz) 
Force Amplitude 

(lbs) 
Phase 

(Radians) 
1 (Fundamental) 2.79E+02 6.02E+01 6.43E-01 

2 5.57E+02 7.13E-01 2.98E+00 
3 8.36E+02 2.11E-02 -2.15E+00 
4 1.11E+03 5.08E-03 3.88E-01 
5 1.39E+03 2.85E-03 3.45E-01 
6 1.67E+03 1.81E-03 9.95E-02 

 
 

Table 3. Fourier coefficients of typical mass acceleration for 60lb force input. 
Harmonic # Frequency 

(Hz) 
Acceleration 
Amplitude 

(g) 

Phase 
(Radians) 

1 (Fundamental) 2.79E+02 3.21E-01 -2.50E+00 
2 5.57E+02 3.81E-03 -1.64E-01 
3 8.36E+02 1.00E-04 6.72E-01 
4 1.11E+03 2.51E-05 2.37E+00 
5 1.39E+03 2.85E-05 -1.77E+00 
6 1.67E+03 3.10E-05 -2.78E+00 

 
The reconstructed time histories using the Fourier coefficients were calculated by summing 
the harmonic components  
 

)2sin()( 0
1

k

N

k
k tkfAta φπ +=∑

=

            (10) 

 
 
 



 21

Where: 
Ak =Amplitude of kth component 
f0 = Fundamental frequency  
φk= Phase of kth component 

 
The reconstructed time histories for the force, mass acceleration, and the base acceleration 
are shown in Figure 19 through Figure 21.  As can be seen the harmonic distortion of the 
force and mass acceleration are minimal while the harmonics in the very small base 
acceleration are very pronounced.  The nonlinear behavior of the joint experiencing 
microslip is revealed much more in the small base acceleration than in the mass 
acceleration or force where the linear portion of the response dominates the small non-
linear component.  The harmonic distortion in the displacement decreases rapidly with 
increasing frequency because for a given acceleration the corresponding displacement 
decreases as a function of the frequency squared. 
 

 
Figure 19. Reconstructed input force. 

 

 
Figure 20. Reconstructed mass acceleration. 
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Figure 21. Reconstructed base acceleration. 

 
Utilizing the analytical fit to the measured signals, the force versus base motion hysteresis 
curves were computed for both the solid leg and the jointed leg for selected experiments.  
Since the linear portion of the response to a harmonic input is contained in the response at 
the fundamental frequency, the force vs. linear portion of the base displacement should plot 
as an ellipse for a linear system.  Deviations from the ellipse are a measure of the nonlinear 
response.  Typical force versus base motion hysteresis curves are shown for 60 and 320 
pounds of force in Figures 22 and 23.  The solid leg hysteresis curves are much more 
elliptical than are the hysteresis curves for the jointed leg.  The area within each curve is a 
measure of the energy dissipated per cycle.  Note the significant difference in area for the 
jointed leg compared to the solid leg.  The asymmetry of the response between compression 
and tension is also very evident in the plot.  The loop shown in the jointed leg is due to the 
large second harmonic component that increases with increasing force level.   
 

Figure 22. Force vs. base motion hysteresis 
curves for a 60 lb sweep. 
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Figure 23. Force vs. base motion hysteresis 
curves for a 320 lb sweep. 

 
The energy loss per cycle was computed three ways for selected load cycles.  The first 
technique utilizes Equation 5 with measured Q at resonance. The second uses the derived 
Fourier coefficients for the mass acceleration and base acceleration to compute the relative 
displacement and integrates the force vs. relative displacement hysteresis curve. The third 
technique uses the derived Fourier coefficients of the base acceleration to integrate the area 
under the force vs. base displacement hysteresis curves.  A typical comparison of the 
computed energy loss per cycle from these techniques is shown in Table 4.   The 
calculations using Q at resonance yields numbers that are within approximately 12 percent 
or less of those computed by the methods that involve fitting the force and acceleration 
signals and computing the hysteresis curves.   This is encouraging in view of the very small 
magnitude of the numbers associated with the base motion of a few micro-inches or less.  
 

Table 4. Comparison of energy loss per cycle calculations. 
Input Force 

(lb) 
Resonance 

(in-lb) 
 

Force vs. Relative 
Displacement 

(in-lb) 

Force vs. Base 
Displacement 

(in-lb) 
60 3.805E-05 3.683E-05 3.768E-05 
120 1.956E-04 1.893E-04 1.893E-04 
180 5.207E-04 4.907E-04 4.905E-04 
240 1.066E-03 9.759E-04 9.755E-04 
320 2.242E-03 1.958E-03 1.957E-03 

 

Random Vibration Experiments 
Experiments were performed to investigate the response of the single-leg system to random 
vibrations.  A constant force power spectral density at two levels was controlled over a 
bandwidth encompassing the fixed base resonance of the system. The spectral density was 
adjusted to achieve peaks in the time history of the force consistent with the peaks used for 
the sinusoidal excitation to allow comparison with the two types of excitation.  The first 
level was performed at 20 lb-rms in order to yield three-sigma peaks in the Gaussian 
random vibration signal of 60 lb.  The second level was performed at 107 lb-rms in order to 
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yield peaks of 321 lb.   Frequency response functions (FRF) were computed from the 
acceleration of the inertial mass, y, with respect to the base acceleration, x, using the ratio of 
the cross-spectral density to the auto-spectral density, 
 

)(
)(

)(
fG
fG

fH
xx

xy=       (11) 

 
Where Gxy is the cross-spectral density between the base acceleration and the acceleration 
of the mass and Gxx is the auto-spectral density of the base acceleration.  
 
The tests were controlled with maximum available 3200 frequency lines yielding a 
frequency resolution of 0.125 Hz.  This very fine frequency resolution was required to 
resolve the peak (Q) in the measured FRF for the lightly damped system.  The results are 
shown in Figure 24 including the magnitude of the FRF and the associated coherence 
functions for the two levels.  For the 20 lb-rms input level the FRF looks smooth with a 
peak value near that computed with the sinusoidal input and the coherence function shows 
only a slight notch at the resonant frequency.  At the higher 107 lb-rms input level the FRF 
shows the expected decrease in the peak value (Q) but also shows considerable distortion 
and noise near the peak.  The coherence function is also noisy with a very sharp notch in the 
vicinity of the resonance.   These effects are indications of non-linear response of the 
system that becomes more pronounced with increased input force level.   
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Figure 24. Frequency response function and coherence function measurements for 
random vibration at 20 lbs-rms and 107 lbs-rms. 

 
Analytical Investigation of the FRF for a Non-linear System 

To further investigate the sharp decrease in coherence and the noise on the calculated FRF 
an analytical study was performed with an idealized non-linear single degree freedom 
system.  The equations of motion for a SDOF system with viscous damping and a cubic 
stiffness were used to calculate the transfer function and coherence of the system. The 
results were compared to the response of a linear SDOF system.   
 
The following results were obtained with a simple model of a SDOF mass with spring and 
viscous damper.  The spring in the model can be defined as linear, linear plus cubic, or 
bilinear.  The natural frequency of the system is 300 Hz with the linear spring.  The 
damping ratio is 0.2.  A typical linear plus softening cubic spring appears has the restoring 
force shown in Figure 25. 
 

20 lbs-rms 107 lbs-rms 
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Figure 25. Linear and linear+cubic stiffness plot. 

 
When both the linear and nonlinear SDOF systems were excited using band limited 
stationary random excitation whose autospectral density is flat over 100-500 Hz, the FRF’s 
shown in Figure 26 were found.  Note the distortion of the peak and the drop in coherence 
with the cubic stiffness component in the spring. 
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Figure 26. Analytical results for SDOF system with linear and cubic stiffness. 

 
The analytical study shows that the FRF computed for an ideal non-linear system (with no 
noise) shows similar results as those observed in the experiments for the single leg 
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experiment.  The single leg demonstrates both non-linear stiffness and non-linear microslip 
damping. 

Transient Excitation Experiments 
A separate experiment was performed to provide measured response of the single leg to a 
transient excitation.  This measured response would then serve as a reference data set for 
comparison with a model prediction where the model parameters would be computed from 
the experimental sinusoidal data.  The experimental system was bolted to a very large 
32,000-pound block of steel to simulate a fixed base condition.  The experimental setup is 
shown in Figure 27 and Figure 28.  In order to bolt the base plate to the mass a new set of 
holes was required in the base plate.  During this process the holes were drilled in the 
wrong location and an additional set of holes were then required. The effect of this was to 
decrease the stiffness of the base plate as compared with the stiffness when on the shaker 
with a single set of holes.  Large one-inch diameter by approximately 0.5 inch thick hex 
nuts were used as spacers at four locations between the base plate and the surface of the 
large mass. These spacers were used to provide clearance for the accelerometer beneath the 
force gage and to simulate a similar contact condition provided on the shaker with the 
inserts in the armature.  This shifted the frequency from approximately 270 Hz to 220 Hz 
for the jointed single leg test specimen and from 363 Hz to 260 Hz for the solid single leg. 
 

 
Figure 27. Experimental setup on seismic mass – View 1. 
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Figure 28. Experimental setup on seismic mass – View 2. 

 
The top of the mass was impacted with an instrumented hammer and the response was 
measured with accelerometers and a force gage in the same locations as used for the 
sinusoidal excitation.  The impact had to be applied slightly off-center since the large mass 
has a hole bored through its length at the center.   This off-centered load did slightly excite 
the lower frequency bending modes of the system.  Figure 29 is a plot of the transfer 
function between the accelerometer on the top of the mass and the input force.  The major 
peak at about 220 Hz is the axial mode of the system.  The other major peak at about 77 Hz 
is a bending mode of the system.  In this figure it is evident that as the hammer force is 
increased, the quality of the response in the axial mode decreases and the response of the 
bending mode increases. 
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Figure 29. Frequency response function of acceleration 
response at top of the mass to hammer force input. 
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The impact level was adjusted to generate measured internal forces on the same order as 
were used in the sinusoidal excitation ranging from approximately 60 to 360 lb.  The 
duration of the impact from the hammer was approximately one millisecond as shown in 
Figure 30.  The small oscillation observed after the primary pulse is due to a small amount 
of ringing of the anti-aliasing filter. 
 

 
Figure 30. Hammer impact force. 

 
The measured acceleration of the mass for the transient response is shown in Figure 31 and 
Figure 32.  The slight modulation in the free decay is due to the participation of the bending 
modes at approximately 77 Hz. The participation of the bending mode in the response of 
the system is more prevalent with the high level impact indicating a non-linear coupling of 
the bending response with the axial response. 
 

 
Figure 31. Mass acceleration time histories 
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Figure 32. Expanded mass acceleration time histories 

 
The bending mode response is much less obvious in the internal force measurement due to 
the fact that when bending is applied to the force gage the symmetry of gage will null the 
component due to bending.  In Figure 33, the contribution of the bending mode at 77 Hz is 
much less than in the FRF for the acceleration response shown in Figure 29.  When bending 
is applied to the force gage, half of the gage is subjected to increased compression, and the 
other half observes a decrease in compression. Since the polarity of the output is opposite 
they will tend to cancel.   
 

0 50 100 150 200 250 300 350 400
10-2

10-1

100

101

102

103

Hz

|H
|

Low level hit
High level hit

 
Figure 33. Frequency response function of the internal 
force response in the joint to hammer force input. 
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A plot of the internal force for the jointed structure for the high level and low level impacts 
is shown in Figure 34, and an expanded view of the early portion of the response is shown 
in Figure 35.  The response of the system to the high level impact clearly shows the 
anticipated increased damping as evidenced by the increased relative attenuation of the 
amplitudes between successive peaks over the low level impact.  The data also show the 
slight decrease in frequency with increasing amplitude due to the softening effect of the 
bolted connection. 
 

 
Figure 34. Internal force measurement. 

 

 
Figure 35. Expanded internal force measurement. 

 
Since the internal force is directly related to the acceleration of the mass, the internal force 
signal, with less contamination due to the bending modes, was used for further calculations 
including the energy dissipation per cycle and equivalent viscous damping.  The internal 
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force is also easily computed from the models and can be used for comparison with the 
model results.  
 
The jointed single leg specimen was then replaced with the solid single leg, and the set of 
experiments was repeated to provide a reference set of results without the presence of the 
bolted joint.  The responses for the measured internal force are shown in Figure 36 and 
Figure 37.  As anticipated the damping of the solid single leg is much less than the jointed 
single leg as evidenced by the long duration required for the system transient response to 
decay (two seconds).  
 

 
Figure 36. Internal force measurement for solid single leg. 

 

 
Figure 37. Expanded internal force for solid single leg. 
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The solid and bolted AF&F single leg results are compared in Figure 38 through Figure 41.  
The hammer impacts were not exactly the same for the jointed and solid tests but the 
significant differences in the response due to the bolted connection are apparent.  The data 
show dependence of damping on amplitude because the rate of change of the response for 
the jointed specimen is much greater at the higher amplitude peaks, while the rate of change 
for the solid leg follows the classical exponential curve exhibited by linearly damped 
systems.  It can also be seen that the damping for the jointed leg compares more closely to 
the damping for the solid leg for the low level hit, thus further illustrating the amplitude 
dependence of the damping due to microslip in bolted connections. 
 

 
Figure 38. Comparison of solid vs. bolted for high level hit. 

 

 
Figure 39. Comparison of solid vs. bolted for high level hit. 
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Figure 40. Solid vs. bolted for low level hit. 

 

 
Figure 41. Expanded solid vs. bolted for low level hit. 

 
Analysis of Transient Data 

The decay of the transient responses can also be analyzed in order to derive a curve that 
describes the energy dissipation dependence on force amplitude.  An advantage of this 
technique is that for a single impact with the hammer, the joint is exposed to a wide range 
of force amplitudes during ring down.  The rate of decay of the transient response is related 
to the damping in the structure, and the damping is related to the energy dissipation. 
 
Consider the free decay of a single degree of freedom system, 
 

)cos()( )( tetx d
tt n ωως−=      (12) 
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The envelope of the peaks is 
 

tt netx ως )()( −=       (13) 
 
Taking the logarithm of both sides 
 

ttx nως )()log( −=      (14) 
 
and then, taking the derivative with respect to t, results in 
 

t
dt

tdt
dt

xd
nn ωςως )()())(log( −−=     (15) 

 
If the second term on the right side of Equation 15 is small with respect to the first term on 
the right, we can neglect it.  In that case, the equivalent viscous damping, )(tς , is the slope 
of the envelope (log(x) as function of t) divided by the frequency.   
 
For a linear system, the envelope of log(x) is linear.  For jointed structures such as the 
bolted joint, a polynomial can approximate the points that define the envelope.  The order 
of the polynomial that produces the best fit depends on the shape of the envelope.  If the 
decay is relatively linear, a 3rd order fit is very good.  If the decay is highly nonlinear (n>2.1 
or so where n is the slope of the energy curve on a log-log plot) then a higher order fit 
works well.  However, if the decay envelope is modulated by the presence of other modes 
in the response, then a higher order fit will attempt to match each ripple in the envelope and 
will yield an inaccurate estimate of damping.  When n is about 2.2-2.4 and the response is 
fairly uncontaminated by other modes, a 5th or 7th order fit works well.  Figure 42 shows the 
fit of a fifth order polynomial to the logarithm of peak amplitudes for a medium level hit. 
Figure 43 shows the same polynomial fit and peaks superimposed with the positive 
amplitudes of the transient response.  As can be seen, the fit to the peaks is quite good. 
 
The instantaneous value of the equivalent viscous damping ratio, )(tς , is obtained by 
computing the slope of the polynomial fit to the logarithm of the peak amplitudes and 
dividing by the natural frequency, nω , per Equation 15.  These results are given in Figure 
44 indicating the decrease in damping with time as the amplitudes diminish during the 
transient response. 
 



 36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Polynomial Fit

time (s)

x

 
Figure 42. 5th order polynomial fit to the log of peak 
amplitudes for Medium Level Impact 

 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

20

40

60

80

100

120

140

160

180

time (s)

x

 x
fit
peaks

 
Figure 43. Polynomial fit and actual response. 
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Figure 44. Zeta plotted as a function of time.  Zeta is 
proportional to the slope of the fit seen in Figure 42. 

 
Since the original response time history seen in Figure 43 is the force in the bolted joint 
versus time, the energy dissipation can be calculated based on the damping that was found 
for the decay.  To convert equivalent viscous damping, )(tς , into energy loss per cycle, 
E(t), use the formula 
 

22

2

22

22

2

2 )()(2
)(

n

m

n

mm

n

mm

fm
tFkt

fQm
Amk

Qf
Ak

tE
ζ

===     (16) 

 
Where,  

ζ2
1=Q  

mmAF =  
mkm π2=  

 
The constant km is multiplied by conversion factors in order to yield energy dissipation in 
units of in-lbs.  A value of km = 6150 is used for our single leg experiments (which includes 
a mass of m~196 lbs).  An example energy dissipated versus force curve is shown in Figure 
45. 
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Figure 45. An example energy dissipation curve and its best 
straight line fit. 

 
After the energy curve has been generated, a straight line fit can be calculated for the points 
of the curve in order to estimate the gain and slope of the curve in log-log space.  These 
parameters can be used for various model predictions. 
 
Transient Results 

Four general levels of hammer forces were applied to the system in order to get energy 
dissipation data that encompass a wide range of internal forces and to see if there is any 
dependence of damping on initial force level.  The lowest peak hammer force was about 80 
lbs, and the highest was about 710 lbs.  Five responses were collected for each of the four 
levels, adding up to 20 total responses.  Derived energy dissipated per cycle versus force 
curves for all 20 responses of the jointed structure are seen in Figure 46.  These curves 
contain values of energy dissipation and force for each peak in the transient response 
providing much high density of values than obtained from the sinusoidal experiments. 
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Figure 46. Energy dissipation curves for all jointed responses. 

 
As was mentioned earlier, problems arise when the hammer forces are high enough to 
provide significant excitation to the bending mode of the system.  Not only does the 
bending tend to modulate the decay of the responses creating problems in fitting the 
envelope to the peaks, but also the bending is likely responsible for generating some 
additional damping in the joint that is not present during lower levels of excitation.  
Therefore, the curves for the maximum levels of excitation in Figure 46 tend to indicate 
higher damping.   
 
The quality of responses for more modest excitation levels is still very good.  Figure 47 is a 
plot of energy curves for low, mid, and high levels of hammer impacts along with energy 
dissipation data points from steady state sine vibration testing.  All the curves show fairly 
good agreement with each other.  Also, the curves indicate that the energy dissipation in the 
transient experiment is slightly higher than energy dissipation measured in steady state 
experiments.  As discussed later, the differences in the computed energy dissipation 
between the steady state and transient experiments are likely created by the different 
boundary conditions for the two experimental configurations. 
 
Notice that the energy dissipation curves in Figure 47 have been truncated to display only 
the dissipation data corresponding to force amplitudes above 20 pounds.  In these 
experiments, below 20 pounds, the energy dissipation that is measured is likely corrupted 
by various mechanisms.  First, the signal-to-noise ratio of the response that is measured 
decreases at lower amplitudes.  Second, the polynomial fit of the log of the peaks in the 
response contains artifacts that are more pronounced toward the end of the fit (lowest 
amplitudes), causing artificial fluctuations in the calculated damping.  Lastly, in this 
experiment the dynamics of the seismic mass enter into the boundary condition and are 
probably more influential on the response at low amplitudes.  Figure 48 shows the linear fit 
of the energy dissipation data above 20 pounds of force.  Note that a straight line fit over 
the whole force range would yield a line of different slope that would not be as 
representative of the joint behavior. 
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Figure 47. Transient and steady state energy dissipation. 
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Figure 48. Linear fit of energy dissipation data above 20 lbs 
for a jointed single leg specimen. 

 
A similar set of experiments was performed with the solid single leg inserted into the same 
experimental setup as used for the jointed single leg.  These experiments were performed to 
establish a baseline for other energy losses in the experimental setup including the seismic 
mass.  The response of the solid leg was recorded at various excitation levels.  Unlike the 
jointed responses, the responses for the solid leg without the variability introduced by the 
joint were very repeatable.  Figure 49 shows energy dissipation versus force behavior for 
the solid leg in both the transient and steady state experiments.  The results, as in the case 
for the jointed single leg, indicate that the energy dissipated is higher for the transient 
experiment than for the sinusoidal experiments.  Because there is no bolted joint available 
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to dissipate energy, the difference in the sinusoidal and transient results are an indication 
that there are other mechanisms of energy loss available in the transient experiment.  It is 
likely that the transient response of the seismic mass to the hammer impact also dissipates 
energy in addition to the energy dissipated within the bolted joint. 
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Figure 49. Solid single leg energy curves – transient vs. steady state. 

 
For a solid leg that contains only linear damping, the slope of the curve on a log-log plot 
should be exactly 2.0.  Figure 50 shows a straight line fit of a solid leg energy curve.  The 
slope of 2.02 does indicate nearly linear damping. 
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Figure 50. Solid specimen energy curve and straight line fit 
with slope = 2.02 
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The amplitudes and slopes on a log-log plot of the energy dissipated versus force curves for 
the jointed structure were calculated for all the useful data (not including the maximum 
excitation level containing large bending effects).  Figure 51 show the slopes of straight-
line fits of the curves for internal loads above 20 lbs.  Notice that the calculated slope mean 
and standard deviation are very close to those values that were given earlier for steady state 
sine vibration data (mean of 2.429 and standard deviation of 0.05218).   
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Figure 51. Single leg energy curve slopes for internal forces 
levels above 20 lbs. 
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Figure 52. Energy dissipation at 60 lbs for low, medium and 
high level hits. 
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Figure 52 shows the amplitudes of each straight-line fit computed at 60 pounds of internal 
force for three levels of hammer impact level.  There appears to be a dependence of energy 
dissipation on initial excitation level as shown Figure 52.  Earlier, it was suggested that the 
effects of the bending mode were not as pronounced during the more moderate hammer 
inputs as there were during the very highest hammer inputs (nearly 700 lbs peak force).  
However, it is appears that the bending effects still contribute a the lower levels.  As the 
hammer excitation is increased the bending action in the joint appears to dissipate more 
energy than just that associated with the single axial mode alone. 
 
Scaling Energy Curves According to Steady State Data 

Figure 47 and Figure 49 show that there is small disagreement in the energy dissipation 
between the solid specimens when measured using steady state sine testing and transient 
ring-down testing.  It makes sense that the solid specimen should dissipate the same amount 
of energy in any configuration.  However, there are differences between the transient and 
the steady state experiments in the boundary conditions.  In the steady state experiment, the 
hardware is mounted directly to the shaker head, and the base motion of the experiment is 
enforced by the vibration control system regardless of the dynamics of the experiment.  The 
transient experiment was performed on a very large seismic mass that would tend to 
provide mechanisms for additional energy dissipation.  Also, in order to mount the single 
leg experiment to the seismic mass, additional holes had to be drilled in the base of the 
single leg mount, causing unknown changes in the dynamic behavior of the hardware. 
However, one would still expect that the addition of a bolted joint in the experiment would 
still show the same increase in energy dissipation over the solid unit in the transient 
experiment as it did in the steady experiment.  To illustrate this theory, the energy curve in 
Figure 49 was scaled by a factor of 0.35 in order to make it line up with the steady data as 
seen in Figure 53.  
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Figure 53. A scaling factor of 0.35 applied to the transient 
energy dissipation curves in order to make them coincide 
with steady state data. 
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The result of applying the same scaling factor to the jointed data from the transient 
experiment is seen in Figure 54.  Now both the transient and steady data tend to agree for 
both solid and jointed specimens. It is likely that the raw measured energy dissipation for 
the transient experiments was consistently high due only to differences in boundary 
conditions from those of the steady state experiment. 
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Figure 54. Transient dissipation curves in good agreement 
with steady state energy dissipation measurements after 
scaling by a factor of 0.35. 

 
The transient ring-down technique for obtaining energy dissipation curves of single degree 
of freedom systems appears to be efficient and accurate.  The technique is designed to 
estimate the nonlinear damping of a single mode of transient response as it decays.  In most 
bolted joints experiments, the dynamics of the simple hardware are controlled in a way that 
usually ensures a simple response containing only one mode.  However, when more 
complex structures containing many modes are tested, it is hard to excite the structure in a 
way that only one mode dominates the response.  In those cases, a different technique for 
obtaining damping versus amplitude may need to be employed. 

Conclusion 
The experimental results presented here provide both insight and quantitative information 
about the dynamics of the bolted connection of the AF&F.   Multiple sinusoidal 
experiments were performed, and the energy dissipation vs. force curves were calculated 
based on measured responses.  The energy dissipation curves demonstrated the anticipated 
power-law relationship with amplitudes characteristic of mechanical joints undergoing 
microslip. The multiple sets of data collected after making and breaking the bolted joint 
provided data to evaluate the variability of the joint.  The results show that the slope of the 
energy dissipation curve varied only slightly about the mean while the overall amplitude of 
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each energy curve varied from 20 to 30 percent.  The effect of closing the vertical gap 
created a small increase in energy dissipation and slightly more variation in the results. 
 
The solid leg proved to be very valuable in assessing the energy loss associated with the 
bolted joint.  The energy dissipated in the solid leg was much less than the energy 
dissipated in the bolted joint, and it served as a reference to compare the jointed data.  The 
solid leg represents a nearly linear system, and allowed for other losses in the experiment to 
be quantified, and provides a means for the jointed connection data to be adjusted for these 
losses. 
 
A technique was demonstrated to compute energy dissipation curves from transient 
response data.  This technique holds promise as an efficient means of obtaining energy 
dissipation measurements for jointed interface experiments.  Problems with the technique 
can occur when adjacent vibration modes combine with the desired modal response to 
create a beating effect. Multi-degree-of-freedom techniques will be explored in the future.   
 
The hammer impact tests with the experimental system attached to the large seismic mass 
suffer from two uncontrolled effects.  The first is that the seismic mass represents another 
part of the combined system, has its own dynamics, and provides additional avenues of 
energy loss that are difficult to separate from the desired loss in the joint.  The second is 
that the off-centered application of the impact excites a bending mode that is not present in 
the shaker tests.  The unknown energy losses in the system are estimated from the solid leg 
data and used to adjust the results obtained from the jointed leg experiments.  The effect of 
the bending mode could partially be accounted for by using the internal force gage data that 
tended to null the bending response in the signal such that more accurate curve fitting of the 
peaks could be accomplished.  The bending action in the joint still provides a prying action 
and changes the contact pressure within the joint that will alter the microslip and ultimately 
the energy dissipation.  The data suggest that this effect increases along with the energy 
dissipation with impact level. Even with these issues, good comparison was achieved 
between sinusoidal and the adjusted transient data. 
 
These experimental efforts provide the results to perform analytical model correlation and 
ultimately validation by using one type of excitation, such as sinusoidal, to develop 
parameters for a joint model (calibration) and then use a second type of loading to provide a 
set of data to compare the model prediction (correlation/validation).  Future efforts will 
address shaker driven shock excitations to provide complex shock waveforms characteristic 
of normal and high-level shock loads.   
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